[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097525
Least k such that k*P(n)#-P(n+1) and k*P(n)#+P(n+1) are both primes with P(i)=i-th prime and P(i)#=i-th primorial.
0
4, 2, 1, 2, 14, 1, 4, 1, 5, 42, 3, 19, 33, 12, 48, 105, 26, 5, 35, 23, 49, 70, 160, 59, 52, 141, 105, 96, 154, 103, 174, 114, 140, 314, 615, 97, 42, 6, 781, 240, 8, 71, 764, 14, 321, 197, 916, 823, 901, 23, 390, 121, 1549, 646, 117, 622, 826, 671, 1577, 339, 313, 465, 62
OFFSET
1,1
EXAMPLE
2*3*5*7-11=199 prime 2*3*5*7+11=221=13*17 composite
2*2*3*5*7-11=409 prime 2*2*3*5*7+11=431 prime
2*P(4)#-P(5) and 2*P(4)+P(5) both primes, so k=2 for n=4.
MATHEMATICA
Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1, p = Primorial[n], q = Prime[n + 1]}, While[k*p - q < 2 || !PrimeQ[k*p - q] || !PrimeQ[k*p + q], k++ ]; k]; Table[ f[n], {n, 63}] (* Robert G. Wilson v, Aug 31 2004 *)
CROSSREFS
Sequence in context: A280988 A175665 A200586 * A309975 A010124 A271310
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Aug 27 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 31 2004
STATUS
approved