[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097353
Number of digits of the (10^n)-th tetranacci number (A000078(10^n)).
1
1, 2, 28, 284, 2849, 28500, 285008, 2850083, 28500834, 285008350, 2850083504, 28500835049, 285008350498, 2850083504986, 28500835049863, 285008350498633, 2850083504986335, 28500835049863359, 285008350498633597, 2850083504986335973
OFFSET
0,2
COMMENTS
a(n)/10^n converges to 0.28500835...
LINKS
Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007, Table of n, a(n) for n = 0..25
FORMULA
a(n) = floor(log_10(r) + (10^n-2)*log_10(x)) + 1 for n >= 1, where x is the positive real root of the tetranacci limit equation x^4 - x^3 - x^2 - x - 1 = 0, x = 1.92756... and r is the positive real root of the tetranacci auxiliary equation 563r^4 - 20r^2 - 5r - 1 = 0, r = 0.293813... - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
EXAMPLE
Let t(n) = A000078(n). Then we have t(1) = 0, t(10) = 56, t(100) = 2505471397838180985096739296, with respectively 1, 2, 28 and 284 digits.
MAPLE
# This Maple code will at least get the first few terms correctly!
f:=proc(n) option remember; if n <= 2 then RETURN(0); fi; if n = 3 then RETURN(1); fi; f(n-1) + f(n-2) + f(n-3) +f(n-4); end; for n from 0 to 4 do lprint(f(10^n), length(f(10^n))); od;
MATHEMATICA
a = b = c = 0; d = i = 1; Do[e = a + b + c + d; a = b; b = c; c = d; d = e; If[n == 10^i, Print[Length[IntegerDigits[e]]]; i++ ], {n, 4, 10^6}] (* Ryan Propper, Jul 22 2005 *)
PROG
(PARI) \p 100 x=solve(x=1.9274, 1.9276, x^4-x^3-x^2-x-1); r=solve(x=0.2937, 0.2939, 563*x^4-20*x^2-5*x-1); for(k=1, 25, n=10^k; print1(floor( (log(r)+(n-2)*log(x))/log(10) )+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
CROSSREFS
Sequence in context: A230759 A229581 A230589 * A092801 A281320 A152280
KEYWORD
nonn,base
AUTHOR
Michael Taktikos, Sep 17 2004
EXTENSIONS
2 more terms from Ryan Propper, Jul 22 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
STATUS
approved