[go: up one dir, main page]

login
A096635
Let p = n-th prime == 7 mod 8 (A007522); a(n) = smallest prime q such that p is not a square mod q.
4
5, 3, 7, 3, 3, 11, 5, 5, 11, 3, 3, 7, 5, 3, 3, 7, 3, 3, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 13, 3, 3, 5, 3, 17, 5, 3, 3, 3, 3, 11, 5, 3, 17, 3, 7, 5, 5, 3, 3, 3, 7, 7, 5, 3, 5, 3, 7, 5, 3, 5, 11, 3, 3, 5, 3, 5, 3, 3, 5, 11, 5, 3, 13, 3, 3, 7, 7, 11, 3, 3, 3, 3, 5, 3, 7, 5, 19, 3, 5, 3, 3, 3, 5, 3, 7, 3, 5, 3, 13
OFFSET
1,1
LINKS
MAPLE
P:= select(isprime, [seq(i, i=7..3000, 8)]):
f:= proc(n) local p, q;
p:= P[n]; q:= 2;
while numtheory:-quadres(p, q)=1 do q:= nextprime(q) od;
q
end proc:
map(f, [$1..nops(P)]); # Robert Israel, Mar 13 2020
MATHEMATICA
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 7 &]
CROSSREFS
Sequence in context: A117126 A048997 A331524 * A021953 A171530 A266684
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 24 2004
STATUS
approved