[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096027
Numbers k such that (k+j) mod (2+j) = 1 for j from 0 to 10 and (k+11) mod 13 <> 1.
5
27723, 55443, 83163, 110883, 138603, 166323, 194043, 221763, 249483, 277203, 304923, 332643, 388083, 415803, 443523, 471243, 498963, 526683, 554403, 582123, 609843, 637563, 665283, 693003, 748443, 776163, 803883, 831603, 859323, 887043
OFFSET
1,1
COMMENTS
Numbers k such that k mod 27720 = 3 and k mod 360360 <> 3.
FORMULA
G.f.: 3*x*(9239*x^12 +9240*x^11 +9240*x^10 +9240*x^9 +9240*x^8 +9240*x^7 +9240*x^6 +9240*x^5 +9240*x^4 +9240*x^3 +9240*x^2 +9240*x +9241) / ((x -1)^2*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 -x^2 +1)). - Colin Barker, Apr 11 2013
EXAMPLE
27723 mod 2 = 27724 mod 3 = 27725 mod 4 = 27726 mod 5 = 27727 mod 6 = 27728 mod 7 = 27729 mod 8 = 27730 mod 9 = 27731 mod 10 = 27731 mod 11 = 27731 mod 12 = 1 and 27732 mod 13 = 3, hence 27723 is in the sequence.
PROG
(PARI) {k=11; m=900000; for(n=1, m, j=0; b=1; while(b&&j<k, if((n+j)%(2+j)==1, j++, b=0)); if(b&&(n+k)%(2+k)!=1, print1(n, ", ")))}
(Magma) [n: n in [1..900000] | forall{j: j in [0..10] | IsOne((n+j) mod (2+j)) and (n+11) mod 13 ne 1}]; // Bruno Berselli, Apr 11 2013
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jun 15 2004
STATUS
approved