OFFSET
1,1
COMMENTS
The Bunyakovsky conjecture implies a(n) exists for all n. - Robert Israel, Jul 15 2018
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 16 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..600
Wikipedia, Bunyakovsky conjecture
EXAMPLE
a(1) = 4 because 4^1 - 2 = 2 is prime, a(3) = 9 because 3^3 - 2 = 25, 5^3 - 2 = 123 and 7^3 - 2 = 341 = 11 * 31 are composite, whereas 9^3 - 2 = 727 is prime.
MAPLE
f:= proc(n) local k;
for k from 3 by 2 do
if isprime(k^n-2) then return k fi
od
end proc:
f(1):= 4: f(2):= 2:
map(f, [$1..100]); # Robert Israel, Jul 15 2018
MATHEMATICA
a095303[n_] := For[k = 1, True, k++, If[PrimeQ[k^n - 2], Return[k]]]; Array[a095303, 100] (* Jean-François Alcover, Mar 01 2019 *)
PROG
(PARI) for (n=1, 73, for(k=1, oo, if(isprime(k^n-2), print1(k, ", "); break))) \\ Hugo Pfoertner, Oct 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jun 01 2004
EXTENSIONS
a(2) and a(46) corrected by T. D. Noe, Apr 03 2012
STATUS
approved