Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #97 Feb 22 2023 04:45:28
%S 1,0,1,2,7,20,71,240,871,3148,11655,43332,162769,614198,2330537,
%T 8875768,33924859,130038230,499753855,1924912894,7429160296,
%U 28723877732,111236423288,431403470222,1675316535350,6513837679610,25354842100894,98794053269694,385312558571890,1504105116253904,5876236938019298,22974847399695092
%N Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.
%C A002494 is the number of graphs on n nodes with no isolated points and A095268 is the number of these graphs having distinct degree sequences.
%C Now that more terms have been computed, we can see that this is not the self-convolution of any integer sequence. - _Paul D. Hanna_, Aug 18 2006
%C Is it true that a(n+1)/a(n) tends to 4? Is there a heuristic argument why this might be true? - _Gordon F. Royle_, Aug 29 2006
%C Previous values a(30) = 5876236938019300 from _Lorand Lucz_, Jul 07 2013 and a(31) = 22974847474172100 from _Lorand Lucz_, Sep 03 2013 are wrong. New values a(30) and a(31) independently computed _Kai Wang_ and Axel Kohnert. - _Vaclav Kotesovec_, Apr 15 2016
%C In the article by A. Iványi, G. Gombos, L. Lucz, T. Matuszka: "Parallel enumeration of degree sequences of simple graphs II" is in the tables on pages 258 and 261 a wrong value a(31) = 22974847474172100, but in the abstract another wrong value a(31) = 22974847474172374. - _Vaclav Kotesovec_, Apr 15 2016
%C The asymptotic formula given below confirms that a(n+1)/a(n) tends to 4. - _Tom Johnston_, Jan 18 2023
%H Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, <a href="/A095268/b095268.txt">Table of n, a(n) for n = 0..1651</a> (terms 0 through 79 from Kai Wang)
%H Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, <a href="https://arxiv.org/abs/2301.07022">Counting graphic sequences via integrated random walks</a>, arXiv:2301.07022 [math.CO], 2023.
%H A. Iványi, L. Lucz, T. Matuszka and S. Pirzada, <a href="https://acta.sapientia.ro/en/series/informatica/publications/informatica-contents-of-volume-4-number-2-2012/parallel-enumeration-of-degree-sequences-of-simple-graphs">Parallel enumeration of degree sequences of simple graphs</a>, Acta Univ. Sapiantiae, Inform.4 (2) (2012) 260-288.
%H A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, <a href="http://dx.doi.org/10.2478/ausi-2014-0013">Parallel enumeration of degree sequences of simple graphs II</a>, Acta Universitatis Sapientiae, Informatica, Volume 5, Issue 2 (Dec 2013).
%H A. Iványi, L. Lucz, T. F. Móri and P. Sótér, <a href="http://www.acta.sapientia.ro/acta-info/C3-2/info32-7.pdf">On Erdős-Gallai and Havel-Hakimi algorithms</a>, Acta Univ. Sapiantiae, Inform. 3 (2) (2011) 230-268.
%H A. Kohnert, <a href="http://www.mathe2.uni-bayreuth.de/axel/magdeburg06_number_of_different_degree_sequences.pdf">Number of different degree sequences of a graph with no isolated vertices</a>, 2016.
%H Frank Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/AlleyCat/AlleyCat.html">Alley CATs in Search of Good Homes</a>
%H Kai Wang, <a href="http://arxiv.org/abs/1604.04148">Efficient Counting of Degree Sequences</a>, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms. But a(30) and a(31) are different.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DegreeSequence.html">Degree sequence</a>
%H Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a>
%F a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - _Tom Johnston_, Jan 18 2023
%e a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
%e From _Gus Wiseman_, Dec 31 2020: (Start)
%e The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
%e () . (1,1) (2,1,1) (1,1,1,1)
%e (2,2,2) (2,2,1,1)
%e (2,2,2,2)
%e (3,1,1,1)
%e (3,2,2,1)
%e (3,3,2,2)
%e (3,3,3,3)
%e For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
%e (End)
%t Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* _Gus Wiseman_, Dec 31 2020 *)
%Y Cf. A002494, A004250, A007721 (analog for connected graphs), A271831.
%Y Counting the same partitions by sum gives A000569.
%Y Allowing isolated nodes gives A004251.
%Y The version with half-loops is A029889, with covering case A339843.
%Y Covering simple graphs are ranked by A309356 and A320458.
%Y Graphical partitions are ranked by A320922.
%Y The version with loops is A339844, with covering case A339845.
%Y A006125 counts simple graphs, with covering case A006129.
%Y A027187 counts partitions of even length, ranked by A028260.
%Y A058696 counts partitions of even numbers, ranked by A300061.
%Y A339659 is a triangle counting graphical partitions.
%Y Cf. A007717, A096373, A181819, A320921, A322661, A339559, A339560.
%K nonn
%O 0,4
%A _Eric W. Weisstein_, May 31 2004
%E Edited by _N. J. A. Sloane_, Aug 26 2006
%E More terms from _Gordon F. Royle_, Aug 21 2006
%E a(21) and a(22) from _Frank Ruskey_, Aug 29 2006
%E a(23) from _Frank Ruskey_, Aug 31 2006
%E a(24)-a(29) from _Matuszka Tamás_, Jan 10 2013
%E a(30)-a(31) from articles by _Kai Wang_ and Axel Kohnert, Apr 15 2016
%E a(0) = 1 and a(1) = 0 prepended by _Gus Wiseman_, Dec 31 2020