[go: up one dir, main page]

login
Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q.
4

%I #13 May 06 2019 09:55:14

%S 3,3,5,3,5,3,3,5,3,7,3,3,5,5,3,3,7,5,3,5,3,3,5,3,7,3,3,5,3,7,3,3,3,3,

%T 5,3,3,11,5,3,3,11,5,3,11,3,7,3,5,7,3,3,3,3,7,3,3,7,5,3,3,5,5,11,5,3,

%U 3,5,5,3,7,5,3,5,3,7,3,7,3,5,3,3,3,5,11,5,3,5,3,3,13,5,3,3,3,3,5,5,3,5,3,7

%N Let p = n-th prime == 1 mod 8 (A007519); a(n) = smallest prime q such that p is not a square mod q.

%D M. Kneser, Quadratische Formen, Springer, 2002; see Hilfssatz 18.3.

%H Robert Israel, <a href="/A094928/b094928.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A094929(A269704(n)). - _Robert Israel_, May 06 2019

%e n=3, p = 73, a(3) = q = 5: Legendre(73,5) = -1.

%p f:= proc(p) local q;

%p q:= 3:

%p do

%p if numtheory:-quadres(p,q) = -1 then return q fi;

%p q:= nextprime(q);

%p od;

%p end proc:

%p map(f, select(isprime, [seq(p,p=1..10000,8)])); # _Robert Israel_, May 06 2019

%t f[n_] := Prime[ Position[ JacobiSymbol[n, Select[Range[3, n - 1], PrimeQ[ # ] &]], -1][[1, 1]] + 1]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 1 &] (* _Robert G. Wilson v_, Jun 23 2004 *)

%Y Cf. A007519, A002224, A144294, A269704.

%Y Subsequence of A094929.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Jun 19 2004

%E More terms from _Robert G. Wilson v_, Jun 23 2004