OFFSET
0,2
COMMENTS
In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.
A comparison of their recurrence relations shows that this sequence is the even bisection of A188048. - John Blythe Dobson, Jun 20 2015
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1825
Index entries for linear recurrences with constant coefficients, signature (6,-9,1)
FORMULA
a(n) = (2/9) * Sum_{r=1..8} sin(r*Pi/3)^2*(2*cos(r*Pi/9))^(2*n).
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: (1-4*x+3*x^2)/(1-6*x+9*x^2-x^3).
MATHEMATICA
CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x] (* Michael De Vlieger, Feb 12 2022 *)
PROG
(PARI) Vec((1-4*x+3*x^2)/(1-6*x+9*x^2-x^3) + O(x^30)) \\ Michel Marcus, Jun 21 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Jun 13 2004
STATUS
approved