Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 29 2024 15:50:13
%S 1,4,16,64,257,1028,4112,16448,65793,263172,1052688,4210752,16843009,
%T 67372036,269488144,1077952576,4311810305,17247241220,68988964880,
%U 275955859520,1103823438081,4415293752324,17661175009296,70644700037184
%N Expansion of 1/((1-4*x)*(1-x^4)).
%H G. C. Greubel, <a href="/A083589/b083589.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,0,1,-4)
%F a(0)=1, a(n) = 4*a(n-1) if n is not a multiple of 4, otherwise a(n) = 4*a(n-1) + 1. - _Vincenzo Librandi_, Mar 19 2011
%F a(n) = 4^(n+4)/255 -1/12 +(-1)^n/20 +(-1)^floor(n/2)*A010685(n)/34. - _R. J. Mathar_, Mar 19 2011
%F a(0)=1, a(1)=4, a(2)=16, a(3)=64, a(4)=257, a(n) = 4*a(n-1) + a(n-4) - 4*a(n-5). - _Harvey P. Dale_, Sep 13 2011
%F a(n) = floor(64*(2^(2*(n+1))+1)/255). - _Tani Akinari_, Jul 09 2013
%t CoefficientList[Series[1/((1-4x)(1-x^4)),{x,0,30}],x] (* or *) LinearRecurrence[ {4,0,0,1,-4},{1,4,16,64,257},31] (* _Harvey P. Dale_, Sep 13 2011 *)
%o (PARI) a(n)=(4^(n+4)+64)\255 \\ _Charles R Greathouse IV_, Jul 09 2013
%Y Cf. A033139, A000975.
%K easy,nonn
%O 0,2
%A _Paul Barry_, May 02 2003