[go: up one dir, main page]

login
A083412
Wythoff array read by antidiagonals.
5
1, 4, 2, 6, 7, 3, 9, 10, 11, 5, 12, 15, 16, 18, 8, 14, 20, 24, 26, 29, 13, 17, 23, 32, 39, 42, 47, 21, 19, 28, 37, 52, 63, 68, 76, 34, 22, 31, 45, 60, 84, 102, 110, 123, 55, 25, 36, 50, 73, 97, 136, 165, 178, 199, 89, 27, 41, 58, 81, 118, 157, 220, 267, 288, 322, 144, 30, 44
OFFSET
0,2
COMMENTS
The first term in each row is the least summand in the Zeckendorf representation of every term in the row. - Clark Kimberling, Aug 27 2008
MAPLE
W:= proc(n, k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0, 1], [1, 1]])^(k+1))[1, 2] end: seq(seq(W(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
MATHEMATICA
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; t = Table[ W[n - k + 1, k], {n, 12}, {k, n}] // Flatten
CROSSREFS
A035513 transposed. See that entry for further details.
Sequence in context: A173197 A256568 A138947 * A086399 A105365 A077157
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 09 2003
EXTENSIONS
More terms from Alois P. Heinz, Aug 18 2008
STATUS
approved