[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082883
Primes p(x) satisfying the following conditions: [1]# A082882(x)=1; [2]# {p(x),p(x+1)} are not twin primes; [3]# values of A075860(j) for j composites between these two non-twin primes are identical. See also A075860, A082880-A082882.
1
103, 457, 1009, 1663, 2953, 3079, 6043, 12007, 17707, 20749, 21499, 25579, 28537, 30703, 41227, 54367, 55663, 59443, 66973, 70309, 81547, 83557, 90019, 97003, 101359, 102559, 105367, 108499, 116239, 120847, 126019, 129733, 133873, 138403
OFFSET
1,1
EXAMPLE
p[2033]=17007 is here because next prime is 17013;
for the five j inter-prime composites
i.e. if j is from {17008,..,17012} the values
of A075860 are identical: {7,7,7,7,7}, so A082882(2033)=1;
Smallest such example is a(1)=103 with this sophisticated
property:for i={104,105,106} the fixed points of A008472(i)
i.e. values of A075860(i) are uniformly equal to 2.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Do[s=Length[Union[tik=Table[FixedPoint[sopf, j], {j, 1+Prime[n], -1+Prime[n+1]}]]]; If[Equal[s, 1]&&!PrimeQ[2+Prime[n]], Print[Prime[n]]], {n, 1, 100000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 16 2003
STATUS
approved