[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (7*3^n - 4*0^n)/3.
5

%I #18 Sep 08 2022 08:45:10

%S 1,7,21,63,189,567,1701,5103,15309,45927,137781,413343,1240029,

%T 3720087,11160261,33480783,100442349,301327047,903981141,2711943423,

%U 8135830269,24407490807,73222472421,219667417263,659002251789,1977006755367

%N a(n) = (7*3^n - 4*0^n)/3.

%C Binomial transform of A083495.

%H Vincenzo Librandi, <a href="/A082541/b082541.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (3)

%F G.f.: (1+4*x)/(1-3*x).

%F E.g.f.: (7*exp(3*x) - 4*exp(0))/3.

%F a(n) = A005032(n-1), n > 0. - _R. J. Mathar_, Sep 17 2008

%t Join[{1},NestList[3#&,7,30]] (* _Harvey P. Dale_, May 07 2019 *)

%o (Magma) [(7*3^n-4*0^n)/3: n in [0..30]]; // _Vincenzo Librandi_, Sep 15 2011

%o (PARI) a(n)=(7*3^n-4*0^n)/3 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A083497.

%K nonn,easy

%O 0,2

%A _Paul Barry_, May 02 2003