[go: up one dir, main page]

login
A082140
A transform of binomial(n,6).
11
1, 7, 56, 336, 1680, 7392, 29568, 109824, 384384, 1281280, 4100096, 12673024, 38019072, 111132672, 317521920, 889061376, 2444918784, 6615662592, 17641766912, 46425702400, 120706826240, 310388981760, 790081044480
OFFSET
0,2
COMMENTS
Seventh row of number array A082137. C(n,6) has e.g.f. (x^6/6!)exp(x). The transform averages the binomial and inverse binomial transforms.
LINKS
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(n+6,n).
a(n) = Sum_{j=0..n} C(n+6, j+6)*C(j+6, 6)*(1+(-1)^j)/2.
G.f.: (1 - 7*x + 42*x^2 - 140*x^3 + 280*x^4 - 336*x^5 + 224*x^6 - 64*x^7)/ (1-2*x)^7.
E.g.f.: (x^6/6!)*exp(x)*cosh(x) (with 6 leading zeros).
a(n) = ceiling(binomial(n+6,6)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 89/5 - 24*log(2).
Sum_{n>=0} (-1)^n/a(n) = 5832*log(3/2) - 11819/5. (End)
EXAMPLE
a(0) = (2^(-1) + 0^0/2)*binomial(6,0) = 2*(1/2) = 1 (use 0^0 = 1).
MAPLE
[seq (ceil(binomial(n+6, 6)*2^(n-1)), n=0..22)]; # Zerinvary Lajos, Nov 01 2006
MATHEMATICA
Drop[With[{nmax = 56}, CoefficientList[Series[x^6*Exp[x]*Cosh[x]/6!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+6, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *)
LinearRecurrence[{14, -84, 280, -560, 672, -448, 128}, {1, 7, 56, 336, 1680, 7392, 29568, 109824}, 30] (* Harvey P. Dale, Jul 18 2023 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(x^6*exp(x)*cosh(x)/6!)) \\ G. C. Greubel, Feb 05 2018
(Magma) [(2^(n-1) + 0^n/2)*Binomial(n+6, n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
For n>0, a(n) = 1/2 * A002409(n).
Sequence in context: A047664 A055345 A180287 * A264693 A054614 A270240
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved