[go: up one dir, main page]

login
A081749
Continued fraction for e/5.
2
0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 9, 1, 3, 3, 3, 4, 3, 3, 4, 1, 2, 2, 1, 4, 1, 2, 2, 1, 5, 9, 1, 5, 3, 3, 6, 3, 3, 6, 1, 2, 2, 1, 6, 1, 2, 2, 1, 7, 9, 1, 7, 3, 3, 8, 3, 3, 8, 1, 2, 2, 1, 8, 1, 2, 2, 1, 9, 9, 1, 9, 3, 3, 10, 3, 3, 10, 1, 2, 2, 1, 10, 1, 2
OFFSET
1,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
First 18 terms: 0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2.
For k >= 1, a(19k)=a(19k+1)=a(19k+16)=a(19k+17)=3; a(19k+2)=a(19k+7)=2k; a(19k+3)=a(19k+6)=a(19k+8)=a(19k+11)=a(19k+14)=1; a(19k+4)=a(19k+5)=a(19k+9)= a(19k+10)=2; a(19k+12)=a(19k+15)=2k+1; a(19k+18)=2k+2.
MATHEMATICA
ContinuedFraction[E/5, 100] (* Paolo Xausa, Sep 21 2024 *)
PROG
(PARI) contfrac(exp(1)/5) \\ Michel Marcus, Dec 03 2013
CROSSREFS
Cf. A019762 (decimal expansion).
Cf. A003417 (e), A006083 (e/2), A006084 (e/3), A006085 (e/4).
Sequence in context: A090462 A375708 A246966 * A370969 A074825 A225063
KEYWORD
nonn,cofr,easy
AUTHOR
Benoit Cloitre, Apr 08 2003
STATUS
approved