[go: up one dir, main page]

login
A081358
E.g.f.: log((1+x) / (1-x)) / (2*(1-x)).
12
0, 1, 2, 8, 32, 184, 1104, 8448, 67584, 648576, 6485760, 74972160, 899665920, 12174658560, 170445219840, 2643856588800, 42301705420800, 740051782041600, 13320932076748800, 259500083163955200, 5190001663279104000, 111422936937037824000, 2451304612614832128000
OFFSET
0,3
COMMENTS
Number of cycles of odd cardinality in all permutations of [n]. Example: a(3)=8 because among (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) we have eight cycles of odd length. - Emeric Deutsch, Aug 12 2004
a(n) is a function of the harmonic numbers. a(n) = n!*h(n) - n!/2 * h(floor(n/2)), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Aug 06 2010
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 3.3.13
LINKS
B. A. Kuperschmidt, ... And free lunch for all.
B. A. Kuperschmidt, Journal of Nonlinear Mathematical Physics 2000 v. 7 no. 2, A Review of Bruce C. Berndt's Ramanujan's Notebooks parts I-V
FORMULA
E.g.f.: log((1+x) / (1-x)) / (2*(1-x)).
a(n) = n! * Sum_{k=0..n, k odd} 1/k.
a(n) = n!/2*(Psi(ceiling(n/2)+1/2)+gamma+2*log(2)). - Vladeta Jovovic, Oct 20 2003
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*2^(k-1)*binomial(n, k)/k. - Vladeta Jovovic, Aug 12 2005
a(n) = n*a(n-1) + ((-1)^(n+1)+1)/2*(n-1)!. - Gary Detlefs, Aug 06 2010
a(n) = A000254(n) - A092691(n). - Gary Detlefs, Aug 06 2010
a(n) ~ n!/2 * (log(n) + gamma + log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013
a(2*n + 1) = A049034(n).
E.g.f.: arctanh(x)/(1 - x). - Ilya Gutkovskiy, Dec 19 2017
EXAMPLE
G.f. = x + 2*x^2 + 8*x^3 + 32*x^4 + 184*x^5 + 1104*x^6 + 8448*x^7 + ...
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[
D[Series[(1 - x^2)^(-1/2) ((1 + x)/(1 - x))^(y/2), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 27 2012 *)
a[ n_] := If[ n < 0, 0, n! Sum[ 1/k, {k, 1, n, 2}]]; (* Michael Somos, Jan 06 2015 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Log[ (1 + x) / (1 - x)] / (2 (1 - x)), {x, 0, n}]]; (* Michael Somos, Jan 06 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, n! * polcoeff( log(1 + 2 / (-1 + 1 / (x + x * O(x^n)))) / (2 * (1-x)), n))};
(PARI) {a(n) = if( n<0, 0, n! * sum(k=1, n, (k%2)/k))}; /* Michael Somos, Sep 19 2006 */
(PARI) first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)/(1 - x)), -n) \\ Iain Fox, Dec 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 18 2003
STATUS
approved