OFFSET
1,1
COMMENTS
If 2^(Prime[n]) - 1 is a prime number, then a(n) = 2^(Prime[n]) - 1, where Prime[n] denotes the n-th prime number. This means that every Mersenne prime arises in this sequence. - Stefan Steinerberger, Jan 22 2006
For all n with prime(n) < 300, a(n) has either prime(n) or prime(n)+1 bits. - David Wasserman, Oct 25 2006
FORMULA
EXAMPLE
MATHEMATICA
Do[k=1; While[Count[IntegerDigits[Prime[k], 2], 1] !=Prime[n], k++ ]; Print[Prime[k]], {n, 1, 10}]
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Mar 05 2003
EXTENSIONS
More terms from Franklin T. Adams-Watters, Jun 06 2006
Further terms from David Wasserman, Oct 25 2006
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
STATUS
approved