[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089107
Square array T(r,j) (r>=1, j>=1) read by antidiagonals, where T(r,j) is the convoluted convolved Fibonacci number G_j^(r) (see the Moree paper).
0
1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 3, 5, 5, 0, 1, 3, 7, 9, 8, 0, 1, 4, 10, 17, 19, 13, 0, 1, 4, 13, 25, 37, 34, 21, 0, 1, 5, 16, 38, 64, 77, 65, 34, 0, 1, 5, 20, 51, 102, 146, 158, 115, 55, 0, 1, 6, 24, 70, 154, 259, 331, 314, 210, 89, 0, 1, 6, 28, 89, 222, 418, 626, 710, 611, 368, 144
OFFSET
1,6
EXAMPLE
Triangle begins:
1
0 1
0 1 2
0 1 2 3
0 1 3 5 5
Array begins:
[1, 1, 2, 3, 5, 8, 13, 21, ...],
[0, 1, 2, 5, 9, 19, 34, 65, ...],
[0, 1, 3, 7, 17, 37, 77, 158, ...],
[0, 1, 3, 10, 25, 64, 146, 331, ...],
[0, 1, 4, 13, 38, 102, 259, 626, ...],
[0, 1, 4, 16, 51, 154, 418, 1098, ...],
[0, 1, 5, 20, 70, 222, 654, 1817, ...],
[0, 1, 5, 24, 89, 309, 967, 2871, ...],
...........
MAPLE
with(numtheory): m := proc(r, j) d := divisors(r): f := z->1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 30)): coeff(Wser, z^j) end: seq(seq(m(n-q+1, q), q=1..n), n=1..17); # for the sequence read by antidiagonals
with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: matrix(10, 10, m); # for the square array
MATHEMATICA
rows = 12;
f[z_] := 1/(1 - z - z^2);
W[r_] := W[r] = (z/r)*Sum[MoebiusMu[d]*f[z^d]^(r/d), {d, Divisors[r]}] + O[z]^(rows+1);
A = Table[CoefficientList[W[r], z] // Rest, {r, 1, rows}];
T[r_, j_] := A[[r, j]];
Table[T[r - j + 1, j], {r, 1, rows}, {j, 1, r}] // Flatten (* Jean-François Alcover, Dec 09 2017, from Maple *)
CROSSREFS
Sequence in context: A353174 A233292 A108456 * A361756 A364912 A321449
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Dec 05 2003
EXTENSIONS
Edited by Emeric Deutsch, Mar 06 2004
STATUS
approved