OFFSET
1,1
COMMENTS
Conjecture: The interval [PIPS4(n), PIPS4(n+1)] always contains at least one twin prime pair. (This implies the Twin Prime Conjecture.)
FORMULA
EXAMPLE
a(1) = 5, since there are five pairs of twin primes at least PIPS4(1) = 31 and at most PIPS4(2) = 127: (41,43), (59,61), (71,73), (101,103), and (107,109).
PROG
(PARI) piptwins4(m, n) = { for(x=m, n, f=1; c=0; p1 = prime(prime(prime(prime(prime(x))))); p2 = prime(prime(prime(prime(prime(x+1))))); forprime(j=p1, p2-2, if(isprime(j+2), f=0; c++) ); print1(c", "); ) }
(Sage)
def PIP(n, i): # Returns the n-th prime-indexed prime of order i
if i==0:
return primes_first_n(n)[n-1]
else:
return PIP(PIP(n, i-1), 0)
def A088973(n):
return len([i for i in range(PIP(n, 4), PIP(n+1, 4), 2) if (is_prime(i) and is_prime(i+2))])
A088973(60) # Danny Rorabaugh, Mar 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Oct 30 2003
EXTENSIONS
Edited to count twin pairs entirely within [PIPS4(n), PIPS4(n+1)], rather than pairs with the first prime in that interval. - Danny Rorabaugh, Apr 01 2015
STATUS
approved