[go: up one dir, main page]

login
A087863
a(n) = (n^3 + 24*n^2 + 65*n + 36)/6.
1
6, 21, 45, 79, 124, 181, 251, 335, 434, 549, 681, 831, 1000, 1189, 1399, 1631, 1886, 2165, 2469, 2799, 3156, 3541, 3955, 4399, 4874, 5381, 5921, 6495, 7104, 7749, 8431, 9151, 9910, 10709, 11549, 12431, 13356, 14325, 15339, 16399, 17506, 18661, 19865
OFFSET
0,1
FORMULA
G.f.: (6-3*x-3*x^2+x^3)/(1-x)^4. - Vincenzo Librandi, Dec 14 2014
E.g.f.: exp(x)*(36 + 90*x + 27*x^2 + x^3)/6. - Stefano Spezia, May 30 2023
EXAMPLE
a(0)=A=6; a(1)=a(0)+(A+1)+(A+2)=3A+3, a(2)=a(1)+(A+1)+(A+2)+(A+3)=6A+9, a(3)=a(2)+(A+1)+(A+2)+(A+3)+(A+4)=10A+19, ...
MATHEMATICA
Table[(n^3+24n^2+65n+36)/6, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {6, 21, 45, 79}, 50] (* Harvey P. Dale, Dec 15 2014 *)
CoefficientList[Series[(6 - 3 x - 3 x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 16 2014 *)
PROG
(PARI) a(n) = (n^3+24*n^2+65*n+36)/6; \\ Michel Marcus, Aug 24 2013
(Magma) [(n^3+24*n^2+65*n+36)/6: n in [0..40]]; // Vincenzo Librandi, Dec 16 2014
CROSSREFS
Sequence in context: A119868 A175729 A081266 * A212656 A051941 A212707
KEYWORD
nonn,easy
AUTHOR
Helmut E. Fuchs (helmut2(AT)juno.com), Oct 26 2003
EXTENSIONS
New definition from Vladeta Jovovic, Oct 27 2003
More terms from Ray Chandler, Oct 27 2003
STATUS
approved