[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Left half of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.
4

%I #7 Mar 30 2012 18:50:37

%S 142,9,769,58823529,526315789,43478260869,34482758620689,

%T 21276595744680851063829,16949152542372881355932203389,

%U 163934426229508196721311475409,1369,1123595505617977528089

%N Left half of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.

%C a(n) = floor(A086999(n)/10^A087000(n)); A055642(a(n))=A087000(n);

%C a(n) + A087002(n) = 10^A087000(n) - 1.

%D H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, Die periodischen Dezimalbrueche.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MidysTheorem.html">Midy's Theorem</a>

%H <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>

%e p=17: A086999(4)=5882352941176470 -> [58823529][41176470] ->

%e A087001(4)=58823529, A087002(4)=41176470,

%e A087001(4)+A087002(4)=58823529+41176470=99999999.

%K nonn,base

%O 1,1

%A _Reinhard Zumkeller_, Jul 29 2003