[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086785
Primes found among the numerators of the continued fraction rational approximations to Pi.
2
3, 103993, 833719, 4272943, 411557987, 7809723338470423412693394150101387872685594299
OFFSET
1,1
COMMENTS
The numbers listed are primes. For m <= 10000 the only occurrence where both numerator and denominator are prime is 833719/265381.
The next term has 123 digits. - Harvey P. Dale, Dec 23 2018
EXAMPLE
The first 4 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102 where 3 and 103993 are primes.
MATHEMATICA
Select[Numerator[Convergents[Pi, 100]], PrimeQ] (* Harvey P. Dale, Dec 23 2018 *)
PROG
(PARI) \\ Continued fraction rational approximation of numeric functions
cfrac(m, f) = x=f; for(n=0, m, i=floor(x); x=1/(x-i); print1(i, ", "))
cfracnumprime(m, f) = { cf = vector(100000); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer), print1(numer, ", ")); ) }
(PARI)
default(realprecision, 10^5);
cf=contfrac(Pi);
n=0;
{ for(k=1, #cf, \\ generate b-file
pq = contfracpnqn( vector(k, j, cf[j]) );
p = pq[1, 1]; q = pq[2, 1];
if ( ispseudoprime(p), n+=1; print(n, " ", p) ); \\ A086785
\\ if ( ispseudoprime(q), n+=1; print(n, " ", q) ); \\ A086788
); }
/* Joerg Arndt, Apr 21 2013 */
CROSSREFS
Sequence in context: A164841 A171366 A292691 * A159577 A116536 A224241
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 04 2003
EXTENSIONS
Corrected by Jens Kruse Andersen, Apr 20 2013
Corrected offset, Joerg Arndt, Apr 21 2013
STATUS
approved