[go: up one dir, main page]

login
A085975
Number of 1's in decimal expansion of prime(n).
10
0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1
OFFSET
1,5
LINKS
EXAMPLE
prime(5) = 11, so a(5)=2 and prime(1242) = 10111, so a(1242)=4.
MATHEMATICA
DigitCount[Prime[Range[100]], 10, 1] (* Paolo Xausa, Oct 30 2023 *)
PROG
(Haskell)
a085975 = count1 0 . a000040 where
count1 c x | d == 1 = if x < 10 then c + 1 else count1 (c + 1) x'
| otherwise = if x < 10 then c else count1 c x'
where (x', d) = divMod x 10
-- Reinhard Zumkeller, Apr 08 2014
CROSSREFS
Cf. 0's A085974, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.
Sequence in context: A077267 A134022 A262097 * A277778 A255319 A214088
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jul 06 2003
STATUS
approved