[go: up one dir, main page]

login
A085622
Maximal number of segments (equivalently, corners) in a rook circuit of a 2n X 2n board.
2
1, 4, 12, 28, 56, 88, 132, 180, 240, 304, 380, 460, 552, 648, 756, 868, 992, 1120, 1260, 1404, 1560, 1720, 1892, 2068, 2256, 2448, 2652, 2860, 3080, 3304, 3540, 3780, 4032, 4288, 4556, 4828, 5112, 5400, 5700, 6004, 6320, 6640, 6972, 7308, 7656, 8008, 8372
OFFSET
0,2
REFERENCES
Problem asked by Barry Cipra arising from Problem 89 of Vaderlind, Guy & Larson, The Inquisitive Problem Solver, MAA.
LINKS
FORMULA
a(n) = 4n^2 - 2n if n is even and 4n^2 - 2n - 2 if n is odd and > 1.
From Colin Barker, Oct 05 2012: (Start)
a(n) = -1+(-1)^n-2*n+4*n^2 for n>1.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>5.
G.f.: -(4*x^5-7*x^4-6*x^3-4*x^2-2*x-1)/((1-x)^3*(1+x)). (End)
MATHEMATICA
CoefficientList[Series[-(4 x^5 - 7 x^4 - 6 x^3 - 4 x^2 - 2 x - 1)/((1 - x)^3*(1 + x)), {x, 0, 46}], x] (* Michael De Vlieger, Mar 11 2021 *)
CROSSREFS
Sequence in context: A184633 A006000 A161216 * A011940 A223764 A102653
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Jul 11 2003
EXTENSIONS
More terms from David Wasserman, May 30 2004
STATUS
approved