[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084634
Binomial transform of 1, 1, 1, 2, 2, 2, 2, 2, ...
8
1, 2, 4, 9, 21, 48, 106, 227, 475, 978, 1992, 4029, 8113, 16292, 32662, 65415, 130935, 261990, 524116, 1048385, 2096941, 4194072, 8388354, 16776939, 33554131, 67108538, 134217376, 268435077, 536870505, 1073741388, 2147483182, 4294966799, 8589934063
OFFSET
0,2
COMMENTS
Partial sums of A000325.
FORMULA
a(n) = 2^(n+1) - (n^2 + n + 2)/2.
a(n) = 1 + n + n*(n-1)/2 + 2*Sum_{k=3..n} C(n, k).
O.g.f.: (1-3*x+3*x^2)/((1-2*x)*(1-x)^3). - R. J. Mathar, Apr 07 2008
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - R. J. Mathar, Apr 07 2008
a(n) = Sum_{i=0..n} (2^i - i). - Ctibor O. Zizka, Oct 15 2010
a(n) = A000225(n+1) - binomial(n+1,2). - G. C. Greubel, Mar 18 2023
MAPLE
A084634:=n->2^(n+1) - (n^2 +n +2)/2; seq(A084634(n), n=0..50); # Wesley Ivan Hurt, Jan 31 2014
MATHEMATICA
LinearRecurrence[{5, -9, 7, -2}, {1, 2, 4, 9}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2012 *)
PROG
(Sage) [2^(n+1)-1-binomial(n+1, 2) for n in range(52)] # Zerinvary Lajos, May 29 2009
(Magma) [2^(n+1)-1-Binomial(n+1, 2): n in [0..50]]; // G. C. Greubel, Mar 18 2023
CROSSREFS
Sequence in context: A351644 A027711 A307548 * A137256 A051164 A182904
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jun 06 2003
STATUS
approved