[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084215
Expansion of g.f.: (1+x^2)/(1-2*x).
12
1, 2, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
OFFSET
0,2
COMMENTS
Associated with a math magic problem.
Elements are the sums of consecutive pairs of elements of A084214.
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k)*binomial(1, k/2)*(1+(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = A020714(n-2), n > 1. - R. J. Mathar, Dec 19 2008
From Gary W. Adamson, Aug 26 2011: (Start)
a(n) is the sum of top row terms of M^n, M is an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
...
E.g.: a(4) = 20 = (8 + 8 + 4) since the top row of M^4 = (8, 8, 4, 0, 0, 0, ...). (End)
a(n) = floor(2^(n-2)*5). - Taher Jamshidi, Sep 15 2012
a(n) = 2*a(n-1) for n >= 3, a(0) = 1, a(1) = 2, a(2) = 5. - Philippe Deléham, Mar 13 2013
E.g.f.: (5*exp(2*x) - 2*x - 1)/4. - Stefano Spezia, Feb 20 2023
MATHEMATICA
Join[{1, 2, a = 5}, Table[a = 2*a, {n, 0, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[Int[2^(n-2)*5], {n, 0, 40}] (* Taher Jamshidi, Sep 15 2012 *)
CoefficientList[Series[(1 + x^2)/(1 - 2 x), {x, 0, 30}], x] (* G. C. Greubel, Oct 08 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x^2)/(1-2*x)) \\ G. C. Greubel, Oct 08 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2)/(1-2*x))); // G. C. Greubel, Oct 08 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 19 2003
STATUS
approved