[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073681
Smallest of three consecutive primes whose sum is a prime.
18
5, 7, 11, 17, 19, 23, 29, 31, 41, 53, 61, 67, 71, 79, 83, 101, 109, 139, 149, 157, 163, 197, 211, 229, 271, 281, 283, 293, 311, 337, 347, 349, 379, 389, 401, 409, 431, 449, 457, 463, 467, 491, 499, 509, 547, 617, 641, 653, 659, 661, 701, 719, 743, 751, 757
OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harry J. Smith)
FORMULA
Conjecture: for n -> oo, a(n) ~ prime(n) * (log(prime(n)))^C, where C = 8/Pi^2 (cf. A217739). - Alain Rocchelli, Sep 04 2023
MAPLE
t0:=[];
t1:=[];
t2:=[];
for i from 1 to 1000 do
t3:=ithprime(i)+ithprime(i+1)+ithprime(i+2);
if isprime(t3) then
t0:=[op(t0), i];
t1:=[op(t1), ithprime(i)];
t2:=[op(t2), ithprime(i+2)];
fi;
od:
t1;
MATHEMATICA
Transpose[Select[Partition[Prime[Range[200]], 3, 1], PrimeQ[Total[#]]&]] [[1]] (* Harvey P. Dale, Jan 25 2012 *)
PROG
(PARI) forprime(p=1, 1000, pp=nextprime(p+1); if(isprime(p+pp+nextprime(pp+1)), print1(p", ")))
(PARI) A073681(n, print_all=0, start=3)={my(r, q=1); forprime(p=start, , isprime(r+(r=q)+(q=p)) & (n-- ||return(precprime(r-1))) & print_all & print1(precprime(r-1)", "))} \\ M. F. Hasler, Dec 18 2012
(Magma) [NthPrime(n): n in [0..200] | IsPrime(NthPrime(n)+NthPrime(n+1)+ NthPrime(n+2))]; // Vincenzo Librandi, May 06 2015
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 11 2002
EXTENSIONS
More terms from Ralf Stephan, Mar 20 2003
More cross-references from Harvey P. Dale, Jun 05 2013
STATUS
approved