[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071966
Composite numbers such that smallest prime factor, largest prime factor and sum of prime factors (with repetition) are all a sum of two squares.
1
4, 16, 20, 25, 30, 32, 52, 65, 78, 80, 90, 130, 145, 148, 156, 164, 169, 174, 200, 238, 240, 244, 250, 256, 265, 270, 272, 286, 289, 290, 300, 306, 318, 320, 340, 348, 360, 388, 400, 408, 436, 442, 450, 452, 455, 464, 480, 481, 505, 512, 522, 540, 546, 574
OFFSET
1,1
LINKS
EXAMPLE
481 is here since spf(481) = 13 = 2^2+3^2, lpf(481)= 37 = 1^2+6^2 and sopfr(481)= 50 = 1^2+7^2.
MATHEMATICA
sumQ[n_] := AllTrue[FactorInteger[n], EvenQ[Last[#]] || Mod[First[#], 4]!=3 &]; aQ[n_] := CompositeQ[n] && AllTrue[{(f=FactorInteger[n])[[1, 1]], f[[-1, 1]], Plus @@ Times @@@ f}, sumQ]; Select[Range[574], aQ] (* Amiram Eldar, Dec 05 2019 *)
CROSSREFS
Cf. A001481, A001414 (sopfr), A006530 (gpf), A020639 (spf), A002808 (composites).
Sequence in context: A280844 A277887 A216033 * A349521 A326781 A326788
KEYWORD
nonn
AUTHOR
Jason Earls, Jun 15 2002
STATUS
approved