[go: up one dir, main page]

login
A079950
Triangle of n-th prime modulo twice primes less n-th prime.
4
2, 3, 3, 1, 5, 5, 3, 1, 7, 7, 3, 5, 1, 11, 11, 1, 1, 3, 13, 13, 13, 1, 5, 7, 3, 17, 17, 17, 3, 1, 9, 5, 19, 19, 19, 19, 3, 5, 3, 9, 1, 23, 23, 23, 23, 1, 5, 9, 1, 7, 3, 29, 29, 29, 29, 3, 1, 1, 3, 9, 5, 31, 31, 31, 31, 31, 1, 1, 7, 9, 15, 11, 3, 37, 37, 37, 37, 37, 1, 5, 1, 13, 19, 15, 7, 3, 41
OFFSET
1,1
COMMENTS
The right border of the triangle are the primes: T(n,n)=A000040(n); T(n,1)=A039702(n), T(n,2)=A039704(n) for n>1, T(n,3)=A007652(n) for n>2, T(n,4)=A039712(n) for n>3;
FORMULA
T(n, k) = prime(n) mod 2*prime(k), 1<=k<=n.
EXAMPLE
Triangle begins:
2;
3, 3;
1, 5, 5;
3, 1, 7, 7;
3, 5, 1, 11, 11;
1, 1, 3, 13, 13, 13;
1, 5, 7, 3, 17, 17, 17;
...
MAPLE
A079950 := proc(n, k)
modp(ithprime(n), 2*ithprime(k)) ;
end proc:
seq(seq(A079950(n, k), k=1..n), n=1..12) ; # _R. J. Mathar_, Sep 28 2017
PROG
(PARI) T(n, k) = prime(n) % (2*prime(k));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Sep 21 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
_Reinhard Zumkeller_, Jan 19 2003
STATUS
approved