[go: up one dir, main page]

login
A079175
Number of isomorphism classes of associative closed binary operations (semigroups) on a set of order n, listed by class size.
5
1, 1, 2, 3, 2, 0, 7, 15, 2, 0, 0, 7, 5, 0, 62, 112, 2, 0, 0, 0, 6, 0, 0, 8, 0, 2, 51, 0, 47, 2, 576, 1221, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 8, 0, 0, 4, 0, 48, 0, 0, 0, 0, 92, 0, 0, 42, 506, 0, 813, 32, 7397, 19684, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
OFFSET
0,3
COMMENTS
Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..217 (rows 0..8; row 8 was derived from data given in the Distler-Kelsey reference)
A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013.
FORMULA
A079174(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058104(n).
A023814(n) = Sum_{k>=1} T(n,k)*A079210(n,k).
EXAMPLE
Triangle T(n,k) begins:
1;
1;
2, 3;
2, 0, 7, 15;
2, 0, 0, 7, 5, 0, 62, 112;
2, 0, 0, 0, 6, 0, 0, 8, 0, 2, 51, 0, 47, 2, 576, 1221;
...
CROSSREFS
Row sums give A027851.
Cf. A023814, A027423 (row lengths), A079171, A079174, A079210.
Sequence in context: A011024 A105855 A152954 * A332742 A202815 A049336
KEYWORD
nonn,tabf
AUTHOR
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
EXTENSIONS
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022
STATUS
approved