[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078789
Expansion of (1-4*x+2*x^2)/(1-7*x+13*x^2-4*x^3).
5
1, 3, 10, 35, 127, 474, 1807, 6995, 27370, 107883, 427351, 1698458, 6765175, 26985675, 107746282, 430470899, 1720537327, 6878624730, 27505271455, 109996928003, 439924466026, 1759532283963, 7037695641415, 28149647662490, 112595619434887, 450374698997499
OFFSET
0,2
COMMENTS
Number of walks of length 2*n+1 between two adjacent vertices in the cycle graph C_10. - Herbert Kociemba, Jul 02 2004
Also, with offset 1, the cogrowth sequence of the 20-element group D10 = <S,T | S^10, T^2, (ST)^2>. - Sean A. Irvine, Nov 20 2024
LINKS
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
FORMULA
G.f.: (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3).
a(5*n + 3) = A049016(10*n + 3), a(5*n + 4) = A049016(10*n + 5).
From Herbert Kociemba, Jul 02 2004: (Start)
a(n) = [4^(n+1) + (sqrt(5)+3)*phi^(2n) - (sqrt(5)-3)*phi^(-2n)]/10, where phi is the golden ratio (1+sqrt(5))/2.
a(n) = 7a(n-1)-13a(n-2)+4a(n-3). (End)
a(n) = Sum_{k= -floor(n/5)..floor(n/5)} binomial(2*n,n+5*k)/2 = ((3+sqrt(5))^n + (3-sqrt(5))^n + 2^(3*n-1))/(5*2^n). - Mircea Merca, Jan 28 2012
a(n) = (Lucas(2*n+2) + 2^(2*n+1))/5. - Greg Dresden, Jan 26 2023
MATHEMATICA
LinearRecurrence[{7, -13, 4}, {1, 3, 10}, 25] (* Vincenzo Librandi, Dec 18 2018 *)
CoefficientList[Series[(1-4x+2x^2)/(1-7x+13x^2-4x^3), {x, 0, 40}], x] (* Harvey P. Dale, Feb 17 2024 *)
PROG
(PARI) {a(n) = polcoeff( (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3) + x * O(x^n), n)}
(PARI) {a(n) = sum( k=-n\5, n\5, binomial(2*n + 1, n+1 + 5*k))}
(Magma) I:=[1, 3, 10]; [n le 3 select I[n] else 7*Self(n-1)-13*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 18 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 03 2002
STATUS
approved