[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = number of numbers <= k that are coprime to n, 1 <= k <= n.
2

%I #16 Jun 01 2024 09:44:17

%S 1,1,1,1,2,2,1,1,2,2,1,2,3,4,4,1,1,1,1,2,2,1,2,3,4,5,6,6,1,1,2,2,3,3,

%T 4,4,1,2,2,3,4,4,5,6,6,1,1,2,2,2,2,3,3,4,4,1,2,3,4,5,6,7,8,9,10,10,1,

%U 1,1,1,2,2,3,3,3,3,4,4,1,2,3,4,5,6,7,8,9,10,11,12,12,1,1,2,2,3,3,3,3,4,4,5

%N Triangle read by rows: T(n,k) = number of numbers <= k that are coprime to n, 1 <= k <= n.

%C T(n,1) = 1; T(n,n) = phi(n), where phi is Euler's totient function (A000010); for p prime: T(p,i) = i for 1 <= i < p and T(p,p) = p-1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SieveofEratosthenes.html">Sieve of Eratosthenes</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendresFormula.html">Legendre's Formula</a>.

%F T(n,k) = Sum_{mu(d)*floor(k/d): n mod d = 0}, where mu is the Moebius Function (A008683).

%e Triangle begins

%e 1;

%e 1, 1;

%e 1, 2, 2;

%e 1, 1, 2, 2;

%e 1, 2, 3, 4, 4;

%e 1, 1, 1, 1, 2, 2;

%e 1, 2, 3, 4, 5, 6, 6;

%e 1, 1, 2, 2, 3, 3, 4, 4;

%e 1, 2, 2, 3, 4, 4, 5, 6, 6;

%e 1, 1, 2, 2, 2, 2, 3, 3, 4, 4;

%e ...

%p A078401 := proc(n,k)

%p a := 0 ;

%p for j from 1 to k do

%p if igcd(j,n) = 1 then

%p a := a+1 ;

%p end if;

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jul 21 2016

%t T[n_, k_] := Count[Range[k], d_ /; CoprimeQ[n, d]];

%t Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 13 2018 *)

%K nonn,tabl,easy

%O 1,5

%A _Reinhard Zumkeller_, Dec 25 2002

%E Thanks to Duc Ngo Minh (ducnm0(AT)gmail.com), who noticed an error in the formula; corrected by _Reinhard Zumkeller_, Mar 01 2009