[go: up one dir, main page]

login
A078177
Composite numbers with an integer arithmetic mean of all prime factors.
5
4, 8, 9, 15, 16, 20, 21, 25, 27, 32, 33, 35, 39, 42, 44, 49, 50, 51, 55, 57, 60, 64, 65, 68, 69, 77, 78, 81, 85, 87, 91, 92, 93, 95, 105, 110, 111, 112, 114, 115, 116, 119, 121, 123, 125, 128, 129, 133, 140, 141, 143, 145, 155, 156, 159, 161, 164, 169, 170, 177, 180
OFFSET
1,1
COMMENTS
That is, composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer.
LINKS
FORMULA
A001414(a(n)) == 0 modulo A001222(a(n)).
EXAMPLE
60 = 2*2*3*5: (2+2+3+5)/4 = 3, therefore 60 is a term.
MATHEMATICA
Select[Range[200], CompositeQ[#] && IntegerQ[Mean[Flatten[Table[#[[1]], #[[2]]]& /@ FactorInteger[#]]]]&] (* Jean-François Alcover, Aug 03 2018 *)
PROG
(PARI) lista(nn) = {forcomposite(n=1, nn, my(f = factor(n)); if (! (sum(k=1, #f~, f[k, 1]*f[k, 2]) % vecsum(f[, 2])), print1(n, ", ")); ); } \\ Michel Marcus, Feb 22 2016
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 20 2002
EXTENSIONS
Edited by N. J. A. Sloane, May 30 2008 at the suggestion of R. J. Mathar
STATUS
approved