[go: up one dir, main page]

login
A078017
Expansion of (1-x)/(1-x+x^2+2*x^3).
2
1, 0, -1, -3, -2, 3, 11, 12, -5, -39, -58, -9, 127, 252, 143, -363, -1010, -933, 803, 3756, 4819, -543, -12874, -21969, -8009, 39708, 91655, 67965, -103106, -354381, -387205, 173388, 1269355, 1870377, 254246, -4154841, -8149841, -4503492, 11956031, 32759205, 29810158, -26861109
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-x+x^2+2*x^3).
a(n) = A077952(n) - A077952(n-1). - G. C. Greubel, Jun 29 2019
MATHEMATICA
LinearRecurrence[{1, -1, -2}, {1, 0, -1}, 50] (* or *) CoefficientList[ Series[(1-x)/(1-x+x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *)
PROG
(PARI) Vec((1-x)/(1-x+x^2+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+x^2+2*x^3) )); // G. C. Greubel, Jun 29 2019
(Sage) ((1-x)/(1-x+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
(GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 29 2019
CROSSREFS
Cf. A077952.
Sequence in context: A290093 A186102 A170848 * A343170 A169816 A291739
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved