[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077745
Numerator of integral_{x=1..2} (x^2-1)^n dx.
1
1, 4, 38, 582, 12354, 335730, 11127150, 435300390, 19633815810, 1003121039970, 57259773499950, 3611583223860150, 249441581246630850, 18723487284033181650, 1517668796159163197550, 132117536404977132759750
OFFSET
0,2
COMMENTS
Denominator is (2n+1)!/(n! 2^n).
Note that these fractions are not reduced. The reduced fractions are 1, 4/3, 38/15, 194/35, 4118/315, 22382/693, 247270/3003, 1381906/6435, etc. and lead to a different sequence of numerators. [From R. J. Mathar, Nov 24 2008]
FORMULA
(-1)^n*(2*n+1)!!*(2*hypergeom([1/2, -n], [3/2], 4)-hypergeom([1/2, -n], [3/2], 1)). - Vladeta Jovovic, Dec 05 2002
E.g.f.: (2/sqrt(1-6*x)-1)/(1+2*x). - Vladeta Jovovic, Dec 14 2003
a(n) ~ 3*(6*n)^n/(sqrt(2)*exp(n)). - Vaclav Kotesovec, Oct 05 2013
EXAMPLE
If n=3 the integral is 194/35, so a(3) = 7!/(3! 2^3) * 194/35 = 582.
MATHEMATICA
a[n_] := (2n+1)!/n!/2^n*Integrate[(x^2-1)^n, {x, 1, 2}]
CROSSREFS
Cf. A076729.
Sequence in context: A120974 A113664 A217900 * A364816 A277869 A138214
KEYWORD
frac,nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Dec 02 2002
STATUS
approved