[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077288
First member of the Diophantine pair (m,k) that satisfies 6(m^2 + m) = k^2 + k: a(n) = m.
15
0, 1, 3, 14, 34, 143, 341, 1420, 3380, 14061, 33463, 139194, 331254, 1377883, 3279081, 13639640, 32459560, 135018521, 321316523, 1336545574, 3180705674, 13230437223, 31485740221, 130967826660, 311676696540, 1296447829381, 3085281225183, 12833510467154
OFFSET
0,3
COMMENTS
Also nonnegative m such that 24*m^2 + 24*m + 1 is a square. - Gerald McGarvey, Apr 02 2005
FORMULA
Let b(n) be A072256. Then a(2*n+2) = 2*a(2*n+1) - a(2*n) + b(n+1), a(2*n+3) = 2*a(2*n+2) - a(2*n+1) + b(n+2), with a(0)=0, a(1)=1.
G.f.: x*(1+x)^2/((1-x)*(1-10*x^2+x^4)).
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jul 15 2018
a(n) = 10*a(n-2) - a(n-4) + 4, n > 4. - Vladimir Pletser, Feb 29 2020
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020
2*a(n) + 1 = A080806(n+1). - R. J. Mathar, Oct 01 2021
EXAMPLE
a(3) = 2*3 - 1 + 9 = 14, a(4) = 2*14 - 3 + 9 = 34, etc.
G.f. = x + 3*x^2 + 14*x^3 + 34*x^4 + 143*x^5 + 341*x^6 + 1420*x^7 + 3380*x^8 + ... - Michael Somos, Jul 15 2018
MAPLE
f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [$ (0 .. 100)]); - Vladimir Pletser, Jul 24 2020
MATHEMATICA
CoefficientList[Series[x*(1 + x)^2/((1 - x)*(1 - 10 x^2 + x^4)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *)
LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 3, 14, 34}, 50] (* G. C. Greubel, Jul 15 2018 *)
a[ n_] := With[{m = Max[n, -1 - n]}, SeriesCoefficient[ x (1 + x)^2 / ((1 - x) (1 - 10 x^2 + x^4)), {x, 0, m}]]; (* Michael Somos, Jul 15 2018 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))) \\ G. C. Greubel, Jul 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))); // G. C. Greubel, Jul 15 2018
CROSSREFS
The k values are in A077291
Cf. A053141.
Sequence in context: A081269 A140064 A064226 * A094627 A009394 A076533
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
STATUS
approved