[go: up one dir, main page]

login
A077256
Primes p such that p^k == 1 modulo k, where p=prime(k).
3
3, 7, 11, 13, 19, 29, 37, 43, 53, 61, 71, 89, 103, 131, 151, 173, 181, 223, 229, 239, 251, 281, 311, 349, 359, 409, 433, 503, 541, 571, 593, 601, 619, 659, 661, 683, 691, 701, 719, 769, 827, 857, 911, 941, 953, 997, 1069, 1087, 1091, 1129, 1163, 1223, 1291
OFFSET
1,1
COMMENTS
A077254(A049084(a(n))) = 1; a(n) = A000040(A077255(n)).
LINKS
MAPLE
g:= proc(t) local p; p:= ithprime(t); if p&^ t mod t = 1 then p else NULL fi end proc:
map(g, [$1..1000]); # Robert Israel, Oct 31 2016
MATHEMATICA
With[{no=250}, Transpose[Select[Partition[Riffle[Prime[Range[no]], Range[no]], 2], PowerMod[First[#], Last[#], Last[#]]==1&]][[1]]] (* Harvey P. Dale, Jan 05 2011 *)
Prime[Select[Range[250]], PowerMod[Prime[#], #, #]==1&]]
CROSSREFS
Contains A048891.
Sequence in context: A136087 A091250 A186645 * A341864 A067542 A346156
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 31 2002
STATUS
approved