[go: up one dir, main page]

login
A077238
Combined Diophantine Chebyshev sequences A077236 and A077235.
6
4, 5, 11, 16, 40, 59, 149, 220, 556, 821, 2075, 3064, 7744, 11435, 28901, 42676, 107860, 159269, 402539, 594400, 1502296, 2218331, 5606645, 8278924, 20924284, 30897365, 78090491, 115310536, 291437680, 430344779, 1087660229, 1606068580, 4059203236, 5993929541
OFFSET
0,1
COMMENTS
a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A077237(n).
Positive values of x (or y) satisfying x^2 - 4xy + y^2 + 39 = 0. - Colin Barker, Feb 06 2014
Positive values of x (or y) satisfying x^2 - 14xy + y^2 + 624 = 0. - Colin Barker, Feb 16 2014
FORMULA
a(2*k)= A077236(k) and a(2*k+1)= A077235(k), k>=0.
G.f.: (1-x)*(4+9*x+4*x^2)/(1-4*x^2+x^4).
a(n) = 4*a(n-2)-a(n-4). - Colin Barker, Feb 06 2014
EXAMPLE
11 = a(2) = sqrt(3*A077237(2)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
MATHEMATICA
CoefficientList[Series[(1 - x) (4 + 9 x + 4 x^2)/(1 - 4 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 07 2014 *)
LinearRecurrence[{0, 4, 0, -1}, {4, 5, 11, 16}, 40] (* Harvey P. Dale, Oct 23 2015 *)
CROSSREFS
Sequence in context: A066898 A118143 A001350 * A185507 A000286 A227620
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
EXTENSIONS
More terms from Colin Barker, Feb 06 2014
STATUS
approved