OFFSET
1,5
FORMULA
If n>=k^2, T(n, k) = 0. If k<=n<2k, T(n, k) = C(n-1, k-1).
G.f. of column k is: x^k*(1-x^k)^k/(1-x)^k for k>=1. - Paul D. Hanna, Jan 25 2013
EXAMPLE
T(6,3)=7 since 6 can be written as 1+2+3, 1+3+2, 2+1+3, 2+2+2, 2+3+1, 3+1+2, or 3+2+1.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 1, 3, 1;
0, 0, 6, 4, 1;
0, 0, 7, 10, 5, 1;
0, 0, 6, 20, 15, 6, 1;
0, 0, 3, 31, 35, 21, 7, 1;
0, 0, 1, 40, 70, 56, 28, 8, 1;
0, 0, 0, 44, 121, 126, 84, 36, 9, 1;
0, 0, 0, 40, 185, 252, 210, 120, 45, 10, 1; ...
where column sums are k^k (A000312).
PROG
(PARI) T(n, k)=polcoeff(((1-x^k)/(1-x +x*O(x^n)))^k, n-k)
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jan 25 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Oct 29 2002
STATUS
approved