[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(n+1) is the smallest square greater than the n-th partial sum.
2

%I #24 May 30 2020 15:43:07

%S 1,4,9,16,36,81,169,324,676,1369,2704,5476,11025,21904,44100,88209,

%T 176400,352836,705600,1411344,2822400,5645376,11296321,22591009,

%U 45185284,90364036,180741136,361494169,722964544,1445976676,2891965729

%N a(1) = 1, a(n+1) is the smallest square greater than the n-th partial sum.

%C Lim_{n->infinity} a(n)/(2^n) = 1.34669079829214755988545564864530863502076381405786.... - _Jon E. Schoenfield_, Oct 04 2013

%H Nathaniel Johnston, <a href="/A076967/b076967.txt">Table of n, a(n) for n = 1..1000</a>

%F Lim_{n->infinity} a(n+1)/a(n) = 2. - _Zak Seidov_, May 03 2009

%e a(5) = 36 because it is the smallest square greater than the sum of a(1)..a(4) = 30.

%p a[1] := 1:a[2] := 4:for n from 3 to 45 do a[n] := ceil(evalf(sqrt(sum(a[i],i=1..n-1)+1/10^19),100))^2; od:seq(a[k],k=1..45);

%t nxt[{p_,a_}]:=Module[{k=1},While[!IntegerQ[Sqrt[p+k]],k++];{2p+k,p+k}]; NestList[nxt,{1,1},30][[All,2]] (* _Harvey P. Dale_, May 30 2020 *)

%Y Cf. A076968.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Oct 21 2002

%E Corrected and extended by _Sascha Kurz_, Jan 22 2003