[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076305
Numbers k such that prime(k) + prime(k+1) + prime(k+2) is a square.
10
6, 12, 59, 65, 112, 965, 1029, 1455, 1706, 1830, 1890, 2573, 3457, 4490, 4664, 5609, 7927, 9130, 10078, 10143, 12597, 18248, 19727, 20086, 20887, 21708, 22739, 25041, 26536, 28511, 29346, 29664, 29774, 33387, 39945, 40677, 46136, 49869, 58135
OFFSET
1,1
COMMENTS
See A076304 for the square roots of the sums of the three primes.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..600 from Harvey P. Dale)
FORMULA
a(n) = A000720(A206279(n)). - M. F. Hasler, Jan 03 2020
EXAMPLE
6 is a term because prime(6) + prime(7) + prime(8) = 13 + 17 + 19 = 49 = 7^2.
MATHEMATICA
Select[Range[60000], IntegerQ[Sqrt[Sum[Prime[k], {k, #, # + 2}]]] &] (* Ray Chandler, Sep 26 2006 *)
Position[Partition[Prime[Range[60000]], 3, 1], _?(IntegerQ[Sqrt[ Total[ #]]]&), 1, Heads->False]//Flatten (* Harvey P. Dale, Sep 28 2018 *)
PROG
(PARI) n=0; p=2; q=3; forprime(r=5, 1e9, n++; if(issquare(p+q+r), print1(n", ")); p=q; q=r) \\ Charles R Greathouse IV, Apr 07 2017
(Magma) [k:k in [1..60000]| IsSquare(&+[NthPrime(k+m):m in [0, 1, 2]])]; // Marius A. Burtea, Jan 04 2020
CROSSREFS
Cf. A076304 (square roots of sums), A080665 (squares = sums), A206279 (lesser of the primes).
Cf. A064397 (same for 2 primes), A072849 (4 primes), A166255 (70 primes), A166261 (120 primes).
Sequence in context: A076722 A322288 A337739 * A088944 A335000 A352806
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 05 2002
EXTENSIONS
Corrected by Ray Chandler, Sep 26 2006
STATUS
approved