Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 21 2024 11:25:16
%S 4,108,337500,277945762500,79301169838123235887500,
%T 24018350267611933650627567399079537500,
%U 19868946365457062696924774946056904675112420776003728137500
%N a(n) = Product_{i=1..n} prime(i)^prime(i).
%C Denominator of Sum_{i=1..n} 1/(p(i)^p(i)), where p(i) = i-th prime. The numerators are in A117579. E.g., 1/4, 31/108, 96983/337500, 79870008269/277945762500, ... - _Jonathan Vos Post_, Mar 29 2006
%C Equally, denominator of Sum_{k=1..n}(-1)^(k+1) * 1/p(k)^p(k), where p(k) = prime(k). - _Alexander Adamchuk_, Aug 22 2006
%C C = Sum_{k>=1} (-1)^(k+1)/(prime(k)^prime(k)) = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... A122147 is the decimal expansion of C = 0.213281748700785698255627... - _Alexander Adamchuk_, Aug 22 2006
%C Hyperprimorials, from primorials by analogy with hyperfactorials. See A006939. - _Matthew Campbell_, Jul 30 2015
%F log a(n) ~ (n^2 log^2 n)/2. - _Charles R Greathouse IV_, Sep 14 2015
%e A122148(n)/a(n) begins 1/4, 23/108, 71983/337500, ... - _Alexander Adamchuk_, Aug 22 2006
%t Table[Denominator[Sum[1/Prime[k]^Prime[k],{k,1,n}]],{n,1,10}] (* _Alexander Adamchuk_, Aug 22 2006 *)
%t Denominator[Accumulate[1/#^#&/@Prime[Range[10]]]] (* _Harvey P. Dale_, Jan 24 2013 *)
%o (PARI) a(n)=prod(i=1,n,prime(i)^prime(i)) \\ _Charles R Greathouse IV_, Aug 05 2015
%Y Cf. A051674, A122147, A122148, A094289, A117579, A076265, A000040.
%K nonn,frac,easy
%O 1,1
%A _Jeff Burch_, Nov 23 2002
%E Entry revised by _N. J. A. Sloane_, Apr 10 2006
%E Edited by _N. J. A. Sloane_, Aug 04 2008 at the suggestion of _R. J. Mathar_