[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075666
Sum of next n 5th powers.
1
1, 275, 11925, 208624, 2078375, 14118201, 72758875, 304553600, 1084203549, 3390961375, 9540835601, 24582546000, 58801331875, 131987718149, 280410672375, 567799960576, 1102105900025, 2060382328875, 3724847929549, 6534040766000, 11154010982751, 18575718271825
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(1) = 1; a(n) = sum(i^s, {i, n(n-1)/2+1, n(n-1)/2+1+n}).
a(n) = (3n^11 + 25n^9 + 53n^7 + 23n^5 - 8n^3)/96.
G.f.: x*(x^10 +263*x^9 +8691*x^8 +83454*x^7 +301932*x^6 +458718*x^5 +301932*x^4 +83454*x^3 +8691*x^2 +263*x+1) / (x-1)^12. [Colin Barker, Jul 22 2012]
EXAMPLE
s=5; a(1) = 1^s = 1; a(2) = 2^s + 3^s = 2^5 + 3^5 = 275; a(3) = 4^s + 5^s + 6^s = 11925, a(4) = 7^s + 8^s + 9^s + 10^3 = 208624.
MATHEMATICA
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=5; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
nn=30; With[{p5=Range[((nn+1)(nn+2))/2]^5}, Join[{1}, Table[Total[Take[p5, {(n(n+1))/2+1, ((n+1)(n+2))/2}]], {n, nn}]]] (* Harvey P. Dale, Mar 09 2014 *)
Module[{nn=25, p5}, p5=Range[(nn(nn+1))/2]^5; Total/@TakeList[p5, Range[nn]]] (* Harvey P. Dale, Oct 13 2023 *)
CROSSREFS
Cf. A072474 (s=2), A075664 - A075670 (s=3-10), A075671 (s=n).
Sequence in context: A130292 A133536 A224109 * A121743 A084802 A309998
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Sep 24 2002
EXTENSIONS
Formula from Charles R Greathouse IV, Sep 17 2009
STATUS
approved