[go: up one dir, main page]

login
A075511
Sixth column of triangle A075497.
3
1, 42, 1064, 21168, 365232, 5743584, 84713728, 1193127936, 16239711488, 215394955776, 2800564795392, 35851775791104, 453374980255744, 5677724481773568, 70550796621971456, 871159544637161472
OFFSET
0,2
COMMENTS
The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(2*(m+1)*x)/5!.
FORMULA
a(n) = A075497(n+6, 6) = (2^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*2)^n/5!.
G.f.: 1/Product_{k=1..6} (1 - 2*k*x).
E.g.f.: (d^6/dx^6)(((exp(2*x)-1)/2)^6)/6! = (-exp(2*x) + 160*exp(4*x) - 2430*exp(6*x) + 10240*exp(8*x) - 15625*exp(10*x) + 7776*exp(12*x))/5!.
CROSSREFS
Sequence in context: A050988 A163741 A140404 * A016094 A004361 A264178
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved