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The non-anti-Fibonacci numbers (see [2, Sequence A249031]) are the unparenthesised
numbers in

1, 2, (3 = 1 + 2), 4, 5, 6, 7, 8, (9 = 4 + 5), 10, 11, 12,

(13 = 6 + 7), 14, 15, 16, 17, (18 = 8 + 10), 19, 20, 21, 22,

(23 = 11 + 12), 24, . . . ;

this is [2, Sequence A249031]. The numbers in parentheses are the anti-Fibonacci numbers
F̄n (with F̄0 = 3); they are defined as the sums of pairs of consecutive non-anti-Fibonacci
natural numbers (beginning with 1), each non-anti-Fibonacci number occurring in one such
sum. These anti-Fibonacci numbers are

3, 9, 13, 18, 23, 29, 33, 39, . . . ;

they are [2, Sequence A075326] (we omit 0, which does not fit the pattern). We deduce
an anti-Fibonacci number formula from the jumps (first-order differences, [2, Sequence
A249032]) in the sequence.1

Define an integer to be utterly odd if the terminal string of 1’s in its binary representation
has odd length. For instance, that string has the even length 0 for an even integer. A number
2k+1m + (2k − 1) where m ≥ 0 (every non-negative integer has this form) is utterly odd if
and only if k is odd. Utterly odd positive numbers are

1, 5, 7, 9, 13, 17, 21, 23, 25, 29, 31, . . . .

The utterly odd nature of an integer is the property of being, or not being, utterly odd. Most
odd integers are utterly odd; those that are not are

3, 11, 15, 19, 27, 35, . . .

(see [2, Sequence A131323]).

Theorem 1. The anti-Fibonacci numbers F̄n of the second kind, indexed so F̄0 = 3, are

F̄n =


5n+ 3 if n is even,

5n+ 3 if n is odd and (n− 1)/2 is not utterly odd,

5n+ 4 if n is odd and (n− 1)/2 is utterly odd.

Proof. This is a restatement of Theorem 2. �

Theorem 2. Indexing so that f̄0 = 4, the non-anti-Fibonacci numbers are

f̄n =
1

4
[5n− (n mod 8)] + c for n ≥ −2,

1I am grateful to Tao-Ming Wang for leading me deep into this question at Indira Gandhi International
Airport.
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where

c =

{
4 if (n mod 8) < 4, or if (n mod 8) = 4 and bn/8c is utterly odd,

5 if (n mod 8) > 4, or if (n mod 8) = 4 and bn/8c is not utterly odd.

By (n modm) I mean the least non-negative residue of n modulo m, which is a number
in the range 0, 1, . . . ,m− 1.

The difficult part was finding the formula, which I did by interpreting the following repli-
cation lemma as defining the locations and relationships of missing numbers.

Lemma 1. The anti-Fibonacci number sequence 3, 9, 13, 18, 23, . . . has jumps that occur in
consecutive pairs A = (6, 4) or B = (5, 5). The pattern of jump pairs is generated from the
sequence A by the substitution rules A 7→ AB and B 7→ AA.

Proof. The first four jumps, which are AB, follow this rule. The rest of the proof proceeds
by induction after some preparation.

Consider four consecutive non-anti-Fibonacci numbers, f̄i, f̄i+1, f̄i+2, f̄i+3 (call them, col-
lectively, C), that constitute two summed pairs. The pairs sums s1 = f̄i + f̄i+1 and
s2 = f̄i+2 + f̄i+3 satisfy s2 > s1 + 3. Therefore, any two anti-Fibonacci numbers differ
by at least 4. Furthermore, they differ by 4 only if C is four consecutive integers; otherwise
they differ by 5. There is no other possibility because anti-Fibonacci numbers differ by at
least 4.

Assume, as is true initially, that eight consecutive non-anti-Fibonacci numbers, call them
E, are f̄8a = 10a+4, . . . , f̄8a+7 = 10a+12 with one anti-Fibonacci number internally at 10a+8
or 10a+ 9, they are preceded by the anti-Fibonacci number 10a+ 3, and the summed pairs
in E begin with f̄8a = 10a+ 4 and f̄8a+1 = 10a+ 5. This sequence generates anti-Fibonacci
numbers f̄8a + f̄8a+1 = 20a+9, f̄8a+2 + f̄8a+3 = 20a+13, f̄8a+4 + f̄8a+5 = 20a+18 or 20a+19,
and f̄8a+6 + f̄8a+7 = 20a+ 23. The jumps generated by E are 6 from f̄8a−2 + f̄8a−1 = 20a+ 3,
4, 5 or 6, and 5 or 4; thus, they are 6, 4, 5, 5 or 6, 4, 6, 4, also known as AB or AA.
Thus, the pattern of jumps A or B in a decade of integers 8a + 3, . . . , 8a + 12 replicates
itself (imperfectly) in the two decades 16a+3, . . . , 16a+22 as AB or AA, respectively. That
proves the first and second assertions of the lemma. �

Proof of Theorem 2. We already established in the course of proving Lemma 1 that the non-
anti-Fibonacci numbers have the values in Theorem 2, except that we have not determined
when c in the one ambiguous residue class n ≡ 4 mod 8 equals 4 or 5. The Theorem does
give the right values for f̄0, . . . , f̄15, so we can perform an induction.

Let’s perform a few steps of replication. We get A,B sequences

Step 0: A

Step 1: AB

Step 2: ABAA

Step 3: ABAA ABAB

Step 4: ABAA ABAB ABAA ABAA

in which the locations of B’s are at the following positions, beginning at position 0 and
written in binary. Parentheses denote positions with an A. We omit even numbers because
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all even positions are occupied by A’s.

Step 0: –

Step 1: 1

Step 2: 01 (11)

Step 3: 001 (011) 101 111

Step 4: 0001 (0011) 0101 0111 1001 (1011) 1101 (1111)

We call a sequence of consecutive odd numbers from 0 to 2k − 1 in fixed-length binary,
ignoring parentheses, a binary odd sequence and the step from one to the next doubling.
We observe that the B’s are in the utterly odd positions. We also see that the first and
second halves of each sequence are identical except for the very last element, which differs,
alternating between A in the first half and B in the second, and the reverse.

Now we show that pattern continues. First, we show that replication preserves that pattern
in A,B strings. Let ρ denote the replication operator. If we have an A,B pattern Π of the
form ΣαΣᾱ where Σ is a string of A’s and B’s, α denotes either A or B, and ᾱ is the opposite
letter, then

ρ(Π) = ρ(Σ)ρ(α)ρ(Σ)ρ(ᾱ) = ρ(Σ)Aᾱρ(Σ)Aα.

Thus, the result has the form Σ′ᾱ Σ′α, the same shape as Π but with the terminal letter of
each half reversed.

Now we show that doubling a binary odd sequence transforms it in the same way. Write
δ for the doubling operator. Consider a binary odd sequence π = (σ0, . . . , σ2k−1) where
σj = βj,k−1 · · · βj,11 is a string of length k and each βj,i ∈ {0, 1}. In terms of binary strings,
δ transforms π to

δ(π) = (0σ0, . . . , 0σ2k−1)(1σ0, . . . , 1σ2k−1),

where juxtaposition of sequences denotes concatenation. The string 0σj has the same utterly
odd nature as does σj. The string 1σj has the same utterly odd nature as σj does if there
is a 0 in σj. The only way 1σj can differ from σj is for σj to consist entirely of 1’s; then
1σj has the opposite nature to σj. This proves that, if at some Step k in the application of
ρ and δ the B’s appear exactly where there are utterly odd numbers, then the same holds
true at Step k + 1. The theorem is therefore proved. �

Hofstadter [1] used rewriting rules to develop a recursive construction for the sequence
{F̄n}, but his rules are not doubling rules. Possibly for that reason, he did not detect the
binary rule for locating B’s that led me to our theorems.
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