[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075263
Triangle of coefficients of polynomials H(n,x) formed from the first (n+1) terms of the power series expansion of ( -x/log(1-x) )^(n+1), multiplied by n!.
7
1, 1, -1, 2, -3, 1, 6, -12, 7, -1, 24, -60, 50, -15, 1, 120, -360, 390, -180, 31, -1, 720, -2520, 3360, -2100, 602, -63, 1, 5040, -20160, 31920, -25200, 10206, -1932, 127, -1, 40320, -181440, 332640, -317520, 166824, -46620, 6050, -255, 1, 362880, -1814400, 3780000, -4233600, 2739240, -1020600, 204630, -18660, 511, -1
OFFSET
0,4
COMMENTS
Special values: H(n,1)=0, H(2n,2)=0, H(n,-x) ~= ( x/log(1+x) )^(n+1), for x>0. H'(n,1) = -1/n!, where H'(n,x) = d/dx H(n,x).
The zeros of these polynomials are all positive reals >= 1. If we order the zeros of H(n,x), {r_k, k=0..(n-1)}, by magnitude so that r_0 = 1, r_k > r_(k-1), for 0 < k < n, then r_(n-k) = r_k/(r_k - 1) when 0 < k < n, n > 1, where r_(n/2) = 2 for even n.
Also Product_{k=0..(n-1)} r_k = n!, r_(n-1) ~ C 2^n.
I believe that these numbers are the coefficients of the Eulerian polynomials An(z) written in powers of z-1. That is, the sequence is: A0(1); A1(1), A1'(1); A2(1), A2'(1), A2''(1)/2!; A3(1), A3'(1), A3''(1)/2!, A3'''(1)/3!; A4(1), A4'(1), A4''(1)/2!, A4'''(1)/3!, A4''''(1)/4! etc. My convention: A0(z)=z, A1(z)=z, A2(z)=z+z^2, A3(z)=z+4z^2+z^3, A4(z)=z+11z^2+11z^3+z^4, etc. - Louis Zulli (zullil(AT)lafayette.edu), Jan 19 2005
H(n,2) gives 1,-1,0,2,0,-16,0,272,0,-7936,0,..., see A009006. - Philippe Deléham, Aug 20 2007
Row sums are zero except for first row. - Roger L. Bagula, Sep 11 2008
From Groux Roland, May 12 2011: (Start)
Let f(x) = (exp(x)+1)^(-1) then the n-th derivative of f equals Sum_{k=0..n} T(n,k)*(f(x))^(n+1-k).
T(n+1,0) = (n+1)*T(n,0); T(n+1,n+1) = -T(n,n) and for 0 < k < n T(n+1,k) = (n+1-k) * T(n,k) - (n-k+2)*T(n,k-1).
T(n,k) = Sum_{i=0..k} (-1)^(i+k)*(n-i)!*binomial(n-i,k-i)*S(n,n-i) where S(n,k) is a Stirling number of the second kind. (End)
LINKS
Nguyen-Huu-Bong, Some Combinatorial Properties of Summation Operators, J. Comb. Theory, Ser. A 11.3 (1971): 213-221. See Table on page 214.
FORMULA
Generated by [1, 1, 2, 2, 3, 3, ...] DELTA [ -1, 0, -2, 0, -3, 0, ...], where DELTA is the operator defined in A084938.
T(n, k) = Sum_{i=0..n-k} (-1)^(n-i)*C(n-k, i)*(i+1)^n; n >= 0, 0 <= k <= n. - Paul D. Hanna, Jul 21 2005
E.g.f.: A(x, y) = -log(1-(1-exp(-x*y))/y). - Paul D. Hanna, Jul 21 2005
p(x,n) = x^(n + 1)*Sum_{k>=0} k^n*(1 - x)^k; t(n,m) = Coefficients(p(x,n)). - Roger L. Bagula, Sep 11 2008
p(x,n) = x^(n + 1)*PolyLog(-n, 1 - x); t(n,m) = coefficients(p(x,n)) for n >= 1. - Roger L. Bagula and Gary W. Adamson, Sep 15 2008
EXAMPLE
H(0,x) = 1
H(1,x) = (1 - 1*x)/1!
H(2,x) = (2 - 3*x + 1*x^2)/2!
H(3,x) = (6 - 12*x + 7*x^2 - 1*x^3)/3!
H(4,x) = (24 - 60*x + 50*x^2 - 15*x^3 + 1*x^4)/4!
H(5,x) = (120 - 360*x + 390*x^2 - 180*x^3 + 31*x^4 - 1*x^5)/5!
H(6,x) = (720 - 2520*x + 3360*x^2 - 2100*x^3 + 602*x^4 - 63*x^5 + 1*x^5)/6!
Triangle begins:
1;
1, -1;
2, -3, 1;
6, -12, 7, -1;
24, -60, 50, -15, 1;
120, -360, 390, -180, 31, -1;
720, -2520, 3360, -2100, 602, -63, 1;
5040, -20160, 31920, -25200, 10206, -1932, 127, -1;
MAPLE
CL := f -> PolynomialTools:-CoefficientList(f, x):
T_row := n -> `if`(n=0, [1], CL(x^(n+1)*polylog(-n, 1-x))):
for n from 0 to 6 do T_row(n) od; # Peter Luschny, Sep 28 2017
MATHEMATICA
Table[CoefficientList[x^(n+1)*Sum[k^n*(1-x)^k, {k, 0, Infinity}], x], {n, 0, 10}]//Flatten (* Roger L. Bagula, Sep 11 2008 *)
p[x_, n_]:= x^(n+1)*PolyLog[-n, 1-x]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten (* Roger L. Bagula and Gary W. Adamson, Sep 15 2008 *)
PROG
(PARI) T(n, k)=if(k<0 || k>n, 0, n!*polcoeff((-x/log(1-x+x^2*O(x^n)))^(n+1), k))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) T(n, k)=sum(i=0, n-k, (-1)^(n-i)*binomial(n-k, i)*(i+1)^n)
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Using e.g.f. A(x, y): */
{T(n, k)=local(X=x+x*O(x^n), Y=y+y^2*O(y^(k))); n!*polcoeff(polcoeff(-log(1-(1-exp(-X*Y))/y), n, x), k, y)}
for(n=0, 10, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
(PARI) /* Deléham's DELTA: T(n, k) = [x^(n-k)*y^k] P(n, 0) */
{P(n, k)=if(n<0||k<0, 0, if(n==0, 1, P(n, k-1)+(x*(k\2+1)+y*(-(k\2+1)*((k+1)%2)))*P(n-1, k+1)))}
{T(n, k)=polcoeff(polcoeff(P(n, 0), n-k, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(Magma)
T:= func< n, k | &+[(-1)^(n-j)*Binomial(n-k, j)*(j+1)^n: j in [0..n-k]] >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 27 2020
(Sage)
def T(n, k): return sum( (-1)^(n-j)*binomial(n-k, j)*(j+1)^n for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020
(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j->
(-1)^(n-j)*Binomial(n-k, j)*(j+1)^n )))); # G. C. Greubel, Jan 27 2020
CROSSREFS
Cf. Eulerian numbers (A008292).
Sequence in context: A335823 A247500 A375504 * A130850 A130405 A058372
KEYWORD
nice,sign,tabl
AUTHOR
Paul D. Hanna, Sep 13 2002
EXTENSIONS
Error in one term corrected by Benoit Cloitre, Aug 20 2007
STATUS
approved