[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074200
a(n) = m, the smallest number such that (m+k)/k is prime for k=1, 2, ..., n.
7
1, 2, 12, 12720, 19440, 5516280, 5516280, 7321991040, 363500177040, 2394196081200, 3163427380990800, 22755817971366480, 3788978012188649280, 2918756139031688155200
OFFSET
1,2
COMMENTS
Computed by Jack Brennen and Phil Carmody.
EXAMPLE
(12+k)/k is prime for k = 1,2,3. 12 is the smallest such number so a(3) = 12.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = For[dm = LCM @@ Range[n]; m = Quotient[a[n - 1], dm]*dm, True, m = m + dm, If[AllTrue[Range[n], PrimeQ[(m + #)/#] &], Return[m]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Dec 01 2016 *)
PROG
(PARI) isok(m, n) = {for (k = 1, n, if ((m+k) % k, return (0), if (! isprime((m+k)/k), return(0))); ); return (1); }
a(n) = {m = 1; while(! isok(m, n), m++); m; } \\ Michel Marcus, Aug 31 2013
(Python)
from sympy import isprime, lcm
def A074200(n):
a = lcm(range(1, n+1))
m = a
while True:
for k in range(n, 0, -1):
if not isprime(m//k+1):
break
else:
return m
m += a # Chai Wah Wu, Feb 27 2019
CROSSREFS
One less than A093553.
Sequence in context: A007155 A265092 A262032 * A342104 A378118 A274223
KEYWORD
nonn,more
AUTHOR
Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Sep 17 2002, May 10 2010
EXTENSIONS
Corrected by Vladeta Jovovic, Jan 08 2003
a(14) from Jens Kruse Andersen, Feb 15 2004
STATUS
approved