[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways writing n as a sum of different Mersenne prime exponents (terms of A000043).
5

%I #34 Jun 04 2017 02:43:03

%S 0,1,1,0,2,0,2,1,1,2,0,2,1,1,2,1,2,2,2,3,2,4,2,4,3,3,4,2,4,2,4,3,3,4,

%T 3,4,4,4,5,4,5,4,4,5,3,5,3,4,4,3,5,3,5,4,4,5,4,5,4,4,5,3,5,4,3,6,2,6,

%U 3,5,5,3,6,3,5,4,4,4,4,4,4,4,5,3,6,3,5,5,4,6,3,7,3,6,5,5,6,5,6,5,6,6,5,6,6

%N Number of ways writing n as a sum of different Mersenne prime exponents (terms of A000043).

%C This sequence appears to be growing. However, for 704338 < n < 756839, a(n) is 0. See A078426 for the n such that a(n)=0. - _T. D. Noe_, Oct 12 2006

%C Numbers k such that sigma(k) = 2^n. - _Juri-Stepan Gerasimov_, Mar 08 2017

%H T. D. Noe, <a href="/A063883/b063883.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A054973(2^n). - _Michel Marcus_, Mar 08 2017

%e n = 50 = 2 + 5 + 7 + 17 + 19 = 2 + 17 + 31 = 19 + 31, so a(50) = 3. The first numbers for which the number of these Mersenne-exponent partitions is k = 0, 1, 2, 3, 4, 5, 6, 7, 8 are 1, 2, 5, 20, 22, 39, 66, 92, 107, respectively.

%p N:= 500: # to get the first N terms

%p G:= mul(1+x^i,i=select(t -> numtheory:-mersenne(t)::integer, [$1..N])):

%p S:= series(G,x,N+1):

%p seq(coeff(S,x,n),n=1..N); # _Robert Israel_, Sep 22 2016

%t exponents[n_] := Reap[For[k = 1, k <= n, k++, If[PrimeQ[2^k-1], Sow[k]]]][[2, 1]]; r[n_] := Module[{ee, x, xx}, ee = exponents[n]; xx = Array[x, Length[ee]]; Reduce[And @@ (0 <= # <= 1 & /@ xx) && xx.ee == n, xx, Integers]]; a[n_] := Which[rn = r[n]; Head[rn] === Or, Length[rn], Head[rn] === And, 1, Head[rn] === Equal, 1, rn === False, 0, True, Print["error ", rn]]; a[1] = 0; Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, Feb 05 2014 *)

%o (PARI) first(lim)=my(M=[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667], x='x); if(lim>M[#M], error("Need more Mersenne exponents to compute further")); M=select(p->p<=lim, M); Vec(prod(i=1, #M, 1+x^M[i], O(x^(lim\1+1))+1)) \\ _Charles R Greathouse IV_, Mar 08 2017

%o (PARI) a(n) = sum(k=1, 2^n+1, sigma(k)==2^n); \\ _Michel Marcus_, Mar 07 2017

%Y Cf. A000043, A046528, A048947, A063889, A054784.

%Y Numbers n such that a(n) = m: A078426 (m = 0), A283160 (m = 1).

%K nonn,nice

%O 1,5

%A _Labos Elemer_, Aug 28 2001