Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jan 16 2023 17:53:47
%S 3,45,210,630,1485,3003,5460,9180,14535,21945,31878,44850,61425,82215,
%T 107880,139128,176715,221445,274170,335790,407253,489555,583740,
%U 690900,812175,948753,1101870,1272810,1462905,1673535,1906128,2162160,2443155
%N Consider 2n tennis players; a(n) is the number of matches needed to let every possible pair play each other.
%C Number of matchings of size two (edges) in a complete graph on 2n vertices.
%H Vincenzo Librandi, <a href="/A062346/b062346.txt">Table of n, a(n) for n = 2..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = n*(4*n^3 - 12*n^2 + 11*n - 3)/2. - Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006
%F a(n+1) = (2*n+2)*(2*n+1)*(2*n)*(2*n-1)/8. - _James Mahoney_, Oct 19 2011
%F G.f.: 3*x^2*(1 + 10*x + 5*x^2)/(1 - x)^5. - _Vincenzo Librandi_, Oct 13 2013
%F a(n) = binomial(2*n^2-3*n+1, 2). - _Wesley Ivan Hurt_, Oct 14 2013
%F a(n) = A014105(n-1)*(A014105(n-1)-1)/2. - _Bruno Berselli_, Dec 28 2016
%e a(2)=3: given players a,b,c,d, the matches needed are (ab,cd), (ac,bd), (ad,bc).
%e For example, for the K_4 on vertices {0,1,2,3} the possible matchings of size two are: {{0,1}, {2,3}}, {{0,3},{1,2}} and {{0,2},{1,3}}.
%p A062346:=n->n*(n-1)*(2*n-3)*(2*n-1)/2; seq(A062346(k),k=2..100); # _Wesley Ivan Hurt_, Oct 14 2013
%t CoefficientList[Series[3 (1 + 10 x + 5 x^2)/(1 - x)^5, {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 13 2013 *)
%t LinearRecurrence[{5,-10,10,-5,1},{3,45,210,630,1485},40] (* _Harvey P. Dale_, Nov 22 2022 *)
%o (PARI) a(n) = n*(n-1)*(2*n-3)*(2*n-1)/2; \\ _Joerg Arndt_, Oct 13 2013
%o (Magma) [n*(n-1)*(2*n-3)*(2*n-1)/2: n in [2..40]]; // _Vincenzo Librandi_, Oct 13 2013
%Y Cf. A014105.
%K nonn,easy
%O 2,1
%A _Michel ten Voorde_, Jul 06 2001
%E More terms from Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 20 2006