[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062270
Numerators in partial products of the twin prime constant.
7
3, 45, 175, 693, 11011, 2807805, 302307005, 402243205, 714186915, 42803602439, 11086133031701, 5908908905896633, 1488200914442251997, 3041106216468949733, 16213234917387714257, 21611220383343195817
OFFSET
2,1
COMMENTS
For n>1, a(n) is the absolute value of the numerator of the determinant of the n X n matrix with elements M[i,j] = 1/(prime(i)-1)^2 for i=j and 1 otherwise. - Alexander Adamchuk, Jun 02 2006
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20
LINKS
Steven R. Finch, Hardy-Littlewood Constants [Broken link]
Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
FORMULA
a(n) = a(n-1)*(prime(n)*(prime(n)-2)) / gcd(a(n-1)*prime(n)*(prime(n)-2), A062271(n)) for n > 2.
EXAMPLE
a(4) = 175 = 3*1*5*3*7*5 / gcd(3*1*5*3*7*5, 2*2*4*4*6*6).
MATHEMATICA
Numerator[Abs[Table[ Det[ DiagonalMatrix[ Table[ 1/(Prime[i]-1)^2 - 1, {i, 1, n} ] ] + 1 ], {n, 2, 20} ]]] (* Alexander Adamchuk, Jun 02 2006 *)
PROG
(PARI) a(n) = numerator(prod(k=2, n, 1-1/(prime(k)-1)^2)); \\ Michel Marcus, May 31 2022
CROSSREFS
Cf. A062271 (denominators), A005597 (decimal expansion).
Sequence in context: A071968 A170921 A093585 * A069955 A289193 A062346
KEYWORD
easy,nonn,frac
AUTHOR
Frank Ellermann, Jun 16 2001
EXTENSIONS
Typo in link corrected by Martin Griffiths, Apr 03 2009
STATUS
approved