[go: up one dir, main page]

login
A061930
Square array read by antidiagonals of T(n,k)=T(n-1,[k/2])+T(n-1,[k/3]) with T(0,0)=1.
2
1, 0, 2, 0, 2, 4, 0, 1, 4, 8, 0, 0, 4, 8, 16, 0, 0, 4, 8, 16, 32, 0, 0, 3, 8, 16, 32, 64, 0, 0, 3, 8, 16, 32, 64, 128, 0, 0, 1, 8, 16, 32, 64, 128, 256, 0, 0, 1, 8, 16, 32, 64, 128, 256, 512, 0, 0, 1, 8, 16, 32, 64, 128, 256, 512, 1024, 0, 0, 0, 7, 16, 32, 64, 128, 256, 512, 1024
OFFSET
0,3
EXAMPLE
T(9, 7) = T(8, [7/2])+T(8, [7/3]) = T(8, 3)+T(8, 2) = 256+256 = 512. Rows start (1, 0, 0, 0, 0, ...), (2, 2, 1, 0, 0, ...), (4, 4, 4, 4, 3, ...) etc.
CROSSREFS
Row sums are 5^n, i.e. A000351. Each row starts with 2^n copies of 2^n, i.e. A000079 and then continues with A036561 copies of other terms in the rows of A055248. Cf. A061929.
Sequence in context: A261685 A136716 A117946 * A209691 A221683 A332760
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 22 2001
STATUS
approved